Structure of 8-(2,6-Dideoxy- β-ribo-hexopyranosyl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-1-benzopyran-4-one Sesquihydrate, Aciculatin

By Jeanette A. Krause and Drake S. Eggleston
Department of Physical and Structural Chemistry, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA

(Received 27 August 1990; accepted 29 May 1991)

Abstract

C}_{22} \mathrm{H}_{22} \mathrm{O}_{8} \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}, M_{r}=441 \cdot 4\), monoclinic, $I 2, a=21.037$ (7), $b=7.371$ (2),$c=27.512$ (4) \AA, β $=100.34(2)^{\circ}, \quad V=4196.8(8) \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.397 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=0.71073 \AA, \quad \mu=$ $1.029 \mathrm{~cm}^{-1}, F(000)=1864, T=295 \mathrm{~K}$, final $R($ on F) $=0.058$ for 2113 observed reflections with $I \geq 2 \sigma(I)$. Aciculatin crystallizes as a sesquihydrate with two independent molecules per asymmetric unit. The 2,6-dideoxy- β-ribo-hexopyranosyl ring is linked to C 8 of the flavone through a β - C-glycosidic bond. Intramolecular hydrogen bonding occurs between the hydroxyl and ketonic O atoms of the flavone ring system.

Introduction. Flavonoids are a naturally occurring class of plant pigments which frequently occur as glycosides containing either a glucose or rhamnose sugar moiety (Mayer \& Cook, 1943). These pigments display a variety of therapeutic properties including anti-carcinogenic, anti-inflammatory, antioxidant and anti-allergenic activities (Glusker \& Rossi, 1986).
The present crystallographic study was carried out to confirm the molecular structure of aciculatin, a flavonoid isolated from the plant Chrysopogon aciculatis (Carte, DeBrosse, Offen, Carr, Hemling, Berry, Mackenzie-LoCastro \& Westley, 1991).

Experimental. Yellow plates were obtained from slow evaporation of an aqueous ethanol solution at room temperature. A suitable crystal of approximate dimensions $0.3 \times 0.3 \times 0.05 \mathrm{~mm}$ was mounted on the tip of a glass fiber with epoxy resin and used in the diffraction study.

Intensity data were collected at room temperature on an Enraf-Nonius CAD-4 diffractometer with graphite-monochromated Mo $K \alpha$ radiation. Lattice parameters obtained by least-squares refinement of angular settings from 25 reflections in 2θ range 24-30 . Intensity data (5603 reflections) collected using variable speed $\omega-2 \theta$ scans with $2 \leq 2 \theta \leq 56^{\circ}$ (0 $\leq h \leq 27,0 \leq k \leq 9,-36 \leq l \leq 36)$. Three standard reflections ($\overline{3}, 3, \overline{10}, 4, \overline{3}, 11,9 \overline{3} \overline{6}$) monitored every 3 h of X-ray exposure time showed intensity changes of
-5.6%; a correction for deterioration was made (correction: min. 1.000, max. 1.0290). Symmetryequivalent data were averged, $R_{\text {int }}=4.7 \%$ (on I); the 5460 unique reflections were corrected for Lorentz and polarization effects.

The structure was solved by direct methods with SHELXS86 (Sheldrick, 1985). The y coordinate of atom $\mathrm{O} W 1$ was held fixed to define the origin. Non-H atoms were refined with isotropic temperature factors, then with anisotropic displacement parameters. Most of the H -atom positions were located from difference Fourier maps; those not located were calculated at $\mathrm{C}-\mathrm{H}=1.00 \AA$. H -atom coordinates were held fixed at the located or calculated positions along with fixed isotropic temperature factors ($1.3 \times B_{\text {eq }}$ of the adjacent atom). The positions of $\mathrm{H} W 42$ and hydroxyl hydrogen, $\mathrm{H} 2 A$, were not determined. The final refinement converged (max. $\Delta / \sigma=0.02$) to values of the standard crystallographic agreement factors of $R=0.058, w R=$ 0.065 and $S=1.179$ for 2113 reflections with $I \geq$ $2 \sigma(I)$ and 569 parameters. The function minimized was $\sum w\left(\left|F_{o}\right|-\mid F_{c}\right)^{2}$. Weights were assigned to the data as $w=4 F_{o}^{2} / \sigma^{2}(I)$ where $\sigma(I)=\left[\sigma(I)^{2}+\right.$ $\left.\left(0.07 F_{o}\right)^{2}\right]^{1 / 2}$. An extinction coefficient of the form proposed by Zachariasen (1963) was applied and refined: $g=1.80(1) \times 10^{-7}$. OW1 and OW2 were located on special crystallographic positions with occupancies of $0 \cdot 5$. Neutral atom scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV) except for H atoms (Stewart, Davidson \& Simpson, 1965). The effects of anomalous dispersion for non-H were included. A final difference Fourier map showed max. excursions of $(\Delta \rho)_{\max }=0.253$ to $(\Delta \rho)_{\text {min }}=-0.238 \mathrm{e} \AA^{-3}$. The atomic coordinates and equivalent isotropic thermal parameters are collected in Table 1.* All programs

[^0]Table 1. Positional and equivalent isotropic thermal parameters with e.s.d.'s

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B\left(\AA^{2}\right)$
O1A	0.2695 (2)	0.8396 (9)	-0.1610 (2)	$3 \cdot 2$ (1)
O3" A	0.1033 (2)	0.6017 (9)	-0.0495 (2)	3.7 (1)
O4A	0.4627 (2)	0.837 (1)	-0.1602 (2)	$6 \cdot 2$ (2)
O4'A	0.0913 (3)	0.878 (1)	-0.3664 (2)	$7 \cdot 3$ (2)
O4" A	0.0129 (2)	0.832 (1)	-0.1005 (2)	$3 \cdot 5$ (1)
O5A	0.4830 (2)	0.803 (1)	-0.0678 (2)	6.8 (2)
07A	0.2994 (2)	0.796 (1)	0.0113 (2)	$4 \cdot 1$ (2)
07" A	0.1812 (2)	0.9665 (8)	-0.0952 (2)	2.9 (1)
$\mathrm{Cl}^{\prime} A$	0.2407 (4)	0.864 (1)	-0.2467 (3)	$3 \cdot 0$ (2)
$\mathrm{Cl}^{\prime \prime} A$	0.2111 (3)	0.801 (1)	-0.0750 (3)	$2 \cdot 6$ (2)
C2A	0.2930 (3)	0.857 (1)	-0.2037 (3)	2.7 (2)
C2'A	0.1769 (4)	0.892 (1)	-0.2405 (5)	3.9 (2)
C2"A	0.1774 (3)	0.642 (1)	-0.1039 (3)	$2 \cdot 8$ (2)
C3A	0.3560 (4)	0.864 (2)	-0.2043 (3)	$4 \cdot 3$ (3)
C3' A	0.1281 (4)	0.900 (2)	-0.2812 (3)	4.5 (3)
C 3 " A	$0 \cdot 1061$ (3)	0.644 (1)	-0.0995 (3)	$2 \cdot 3$ (2)
C4A	0.4021 (4)	0.843 (2)	-0.1600 (3)	4.7 (3)
$\mathrm{C4}^{\prime} A$	0.1412 (4)	0.872 (2)	-0.3270 (3)	4.7 (3)
$\mathrm{C4}^{\prime \prime} A$	0.0759 (3)	0.827 (1)	-0.1143 (3)	$2 \cdot 6$ (2)
C5A	8.4184 (4)	0.808 (2)	-0.0692 (3)	4.5 (2)
$\mathrm{Cs}^{\prime}{ }^{\text {A }}$	$0 \cdot 2044$ (4)	0.844 (2)	-0.3345 (3)	$4 \cdot 2$ (2)
$\mathrm{C}^{\prime \prime}{ }^{\text {A }}$	0.1147 (4)	0.980 (1)	-0.0869 (3)	$3 \cdot 5$ (2)
C6A	0.3934 (4)	0.795 (2)	-0.0261 (3)	$4 \cdot 3$ (2)
$\mathrm{Cb}^{\prime} A$	0.2533 (4)	0.839 (2)	-0.2936 (3)	$4 \cdot 1$ (2)
$\mathrm{Cb}^{\prime \prime} A$	0.0900 (4)	1.164 (1)	-0.1063 (4)	$4 \cdot 8$ (3)
C7A	0.3266 (3)	0.802 (1)	-0.0303 (3)	$3 \cdot 2$ (2)
C8A	0.2834 (3)	0.812 (1)	-0.0750 (3)	$3 \cdot 1$ (2)
C9A	0.3103 (3)	0.829 (1)	-0.1170 (3)	2.8 (2)
C10A	0.3778 (3)	0.827 (2)	-0.1143 (3)	3.7 (2)
Cl1A	$0 \cdot 3420$ (4)	0.787 (2)	0.0585 (3)	6.0 (3)
018	0.2703 (2)	$0 \cdot 2042$ (9)	$0 \cdot 2072$ (2)	$3 \cdot 0$ (1)
$03^{\prime \prime} B$	0.1945 (2)	0.4285 (8)	$0 \cdot 0224$ (2)	2.9 (1)
$\bigcirc{ }^{\circ} 4 B$	0.4239 (2)	0.194 (1)	0.3198 (2)	4.5 (2)
$\mathrm{O}^{\prime}{ }^{\prime} B$	-0.0039 (2)	0.213 (1)	0.2567 (2)	$6 \cdot 5$ (2)
$\mathrm{O}^{\prime \prime}{ }^{\text {B }}$	0.0892 (2)	0.2142 (9)	0.0248 (2)	3.4 (1)
O5B	0.4994 (2)	0.208 (1)	$0 \cdot 2543$ (2)	$5 \cdot 5$ (2)
O7B	$0 \cdot 3975$ (2)	0.256 (1)	0.0858 (2)	$5 \cdot 1$ (2)
$07^{\prime \prime} B$	0.2382 (2)	0.0709 (8)	$0 \cdot 1076$ (2)	$2 \cdot 6$ (1)
$\mathrm{Cl}^{\prime} B$	$0 \cdot 1920$ (3)	$0 \cdot 202$ (1)	0.2561 (3)	$2 \cdot 9$ (2)
$\mathrm{Cl}^{\prime \prime} B$	0.2747 (3)	0.231 (1)	$0 \cdot 1051$ (2)	$2 \cdot 5$ (2)
C2B	0.2610 (4)	0.202 (1)	0.2542 (3)	3.0 (2)
$\mathrm{C}^{\prime}{ }^{\text {B }}$	$0 \cdot 1474$ (4)	0.159 (1)	0.2144 (3)	$3 \cdot 2$ (2)
$\mathrm{C}^{\prime \prime}{ }^{\text {B }}$	0.2319 (4)	0.399 (1)	0.1087 (3)	$3 \cdot 1$ (2)
C3B	0.3116 (4)	$0 \cdot 198$ (1)	$0 \cdot 2925$ (3)	$3 \cdot 3$ (2)
$\mathrm{C}^{\prime}{ }^{\text {B }}$	0.0819 (4)	0.162 (1)	0.2148 (3)	$3 \cdot 9$ (2)
C3"B	$0 \cdot 1719$ (4)	0.393 (1)	0.0679 (3)	$2 \cdot 8$ (2)
C4B	0.3772 (4)	$0 \cdot 198$ (1)	0.2836 (3)	3.7 (2)
$\mathrm{C}^{\prime}{ }^{\text {B }}$	0.0609 (4)	$0 \cdot 215$ (2)	$0 \cdot 2583$ (3)	$4 \cdot 2$ (2)
$C 4^{\prime \prime} B$	0.1392 (3)	$0 \cdot 210$ (1)	0.0661 (3)	2.7 (2)
C5B	0.4457 (3)	$0 \cdot 216$ (2)	$0 \cdot 2196$ (3)	$3 \cdot 6$ (2)
$\mathrm{C}^{\prime}{ }^{\text {B }}$	$0 \cdot 1050$ (4)	0.254 (2)	0.3006 (3)	$4 \cdot 5$ (3)
C5 $5^{\prime \prime}$ B	0.1864 (3)	0.056 (1)	0.0657 (3)	$2 \cdot 3$ (2)
C6B	0.4516 (4)	0.231 (2)	0.1704 (3)	$4 \cdot 5$ (2)
$\mathrm{C}^{6}{ }^{1}$	0.1703 (4)	0.247 (1)	$0 \cdot 2990$ (3)	$3 \cdot 3$ (2)
C6 ${ }^{\prime \prime}$ B	0.1569 (4)	-0.127 (1)	0.0696 (3)	$3 \cdot 2$ (2)
${ }_{C 7}{ }^{\text {B }}$	0.3955 (3)	0.241 (1)	0.1342 (3)	$3 \cdot 2$ (2)
C8B	$0 \cdot 3340$ (3)	$0 \cdot 224$ (1)	$0 \cdot 1462$ (3)	2.8 (2)
C9B	0.3305 (3)	$0 \cdot 209$ (1)	0.1952 (3)	2.7 (2)
C10B	$0 \cdot 3852$ (3)	$0 \cdot 210$ (1)	$0 \cdot 2330$ (3)	2.8 (2)
Cl1B	0.4590 (4)	$0 \cdot 282$ (2)	0.0709 (3)	7.8 (4)
OW1	0.000	0.500	0.000	$3 \cdot 8$ (2)
OW2	0.500	0.436 (1)	$0 \cdot 500$	$3 \cdot 6$ (2)
OW3	0.2616 (3)	$1 \cdot 252$ (1)	-0.0418 (2)	$5 \cdot 9$ (2)
OW4	0.3835 (3)	1.302 (2)	-0.0466 (2)	12.5 (4)

used were from the locally modified Enraf-Nonius (1979) Structure Determination Package.

Discussion. Aciculatin crystallizes as a sesquihydrate with two independent molecules per asymmetric unit. The molecular structure of molecule B is presented in Fig. 1. Selected bond distances and bond angles are listed in Table 2. Intermolecular hydrogen bonding interactions are collected in Table 3.

The flavone distances and angles are comparable to those in 4^{\prime}-bromo- 5 -hydroxyflavone or 4'-bromo-3-hydroxyflavone (Hayashi, Kawai, Ohno, Iitaka \& Akimoto, 1974), hymenoxin (Watson, Kashyap, Gao \& Mabry, 1991), glabratephrin (Vleggaar, Kruger, Smalberger \& van den Berg, 1978), 3-chloroflavanone (Tomlin \& Cantrell, 1990), 3-hydroxyflavone (Etter, Urbanczyk-Lipkowska, Baer \& Barbara, 1986) or 5-hydroxyflavone (Shoja, 1990), 5-hydroxy-7-methoxyflavone (Shoja, 1989), 5,4'-dihydroxy-3,6,7,8-tetramethoxyflavone (Vijayalakshmi, Rajan, Srinivasan \& Ramachandran Nair, 1986), $3^{\prime}, 5,5^{\prime}, 6-$ tetramethoxyflavone (Ting, Watson \& Dominguez, 1972), 4',5,7-trihydroxyisoflavone (Breton, Precigoux, Courseille \& Hospital, 1975), 5,7,4'-trimethoxyflavanone (Mariezcurrena, 1978), and 5-hy-droxy-6-bromo- $2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime}, 4^{\prime \prime}, 6^{\prime \prime}, 7$-hexaacetylvitexin or 5-hydroxy- $3^{\prime}, 6$-dibromo- $2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime}, 4^{\prime \prime}, 6^{\prime \prime}, 7$-hexaacetylvitexin (Jurnak \& Templeton, 1975).

The benzopyran is virtually planar; the dihedral angle between planar ring halves is $1(2)^{\circ}$ for molecule A and $3 \cdot 1(6)^{\circ}$ for molecule B. The phenolic substituent is planar, but is not coplanar to the benzopyran in either molecule as evidenced by the $\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$ torsion angles of $14(2)$ and $18(2)^{\circ}$ for molecules A and B, respectively. The twisting of the phenolic ring is a result of steric and electronic effects. Theoretical calculations (Glusker \& Rossi, 1986; Rossi, Cantrell, Farber, Dyott, Carrell \& Glusker, 1980) suggest that for flavones with an H atom at position 3 a torsion angle of 22.8° results in a minimum-energy conformation.

Fig. 1. Molecular structure of aciculatin (molecule B) showing labelling scheme. Non-H atoms are drawn with ellipsoids of 50% probability, H atoms are represented as spheres of arbitrary size.

Table 2. Selected bond distances (\AA) and angles (${ }^{\circ}$) Table 3. Intermolecular hydrogen-bonding interactions

O1A	C2A	1.361 (9)		O1B	C2B	$1 \cdot 34$ (1)	
$\mathrm{Ol} A$	C9A	1.353 (9)		O1B	C9B	1.367 (9)	
O3" A	C3" A	1.424 (9)		O3"B	C3" B	1.44 (1)	
O4A	C4A	1.28 (1)		O4B	C4B	1.267 (9)	
O4' A	C4'A	1.37 (1)		$\mathrm{O}^{\prime}{ }^{\prime}$	C4'B	1.356 (9)	
O4" ${ }^{\prime \prime}$	C4" A	1.443 (9)		O4'B	C4"B	1.404 (9)	
O5A	C5A	$1 \cdot 35$ (1)		O5B	C5B	1.343 (9)	
07A	C7A	1.370 (9)		O7B	C7B	1.346 (9)	
07A	C11A	1.441 (9)		O7B	C11B	1.44 (1)	
O7" A	$\mathrm{Cl}{ }^{\prime \prime}{ }^{\text {A }}$	1.44 (1)		O7'B	C1"B	1.42 (1)	
O7" A	C5 ${ }^{\prime \prime}$ A	1.46 (1)		O7" ${ }^{\text {P }}$	C5"B	1.442 (9)	
$\mathrm{Cl}^{\prime} A$	C2A	1.46 (1)		$\mathrm{Cl}^{\prime} \mathrm{B}$	C2B	1.46 (1)	
$\mathrm{Cl}^{\prime} A$	$\mathrm{C}^{\prime}{ }^{\prime}$ A	$1 \cdot 40$ (1)		$\mathrm{Cl}^{\prime} \mathrm{B}$	$\mathrm{C}^{\prime}{ }^{\text {B }}$	1.38 (1)	
$\mathrm{Cl}^{\prime} A$	C6' ${ }^{\prime}$	1.38 (1)		$\mathrm{Cl}^{\prime} \mathrm{B}$	C6'B	1.38 (1)	
$\mathrm{Cl} 1^{\prime \prime}$	C2" ${ }^{\prime}$	1.52 (1)		$\mathrm{Cl}^{\prime \prime} \mathrm{B}$	C2'B	1.54 (1)	
$\mathrm{Cl}^{\prime \prime} A$	C8A	1.52 (1)		$\mathrm{Cl}^{\prime \prime} \mathrm{B}$	C8B	1.53 (1)	
C2A	C3A	1.33 (1)		C2B	C3B	1.36 (1)	
$\mathrm{C} 2^{\prime} \mathrm{A}$	C3'A	1.38 (1)		$\mathrm{C}^{\prime}{ }^{\prime} B$	C3'B	1.38 (1)	
C 2 " A	C3" A	1.53 (1)		C2'B	C3" B	1.53 (1)	
C3A	C4A	1.42 (1)		C3B	C4B	1.45 (1)	
C3'A	C4'A	1.35 (1)		$\mathrm{Cl}^{\prime} \mathrm{B}^{\prime}$	C4' ${ }^{\text {B }}$	1.40 (1)	
C3" ${ }^{\text {A }}$	C4"A	1.51 (1)		C3"B	C4"B	1.51 (1)	
C4A	C10A	1.44 (1)		C4B	C10B	1.43 (1)	
C4'A	$\mathrm{C5}^{\prime} A$	1.40 (1)		C4' B	C5'B	1.38 (1)	
C4" A	C5" A	1.51 (1)		C4" ${ }^{\text {B }}$	C5"B	1.51 (1)	
C5A	C6A	1.38 (1)		C5B	C6B	1.38 (1)	
C5A	C10A	1.38 (1)		C5B	C10B	1.39 (1)	
C5'A	$\mathrm{C}^{\prime}{ }^{\text {A }}$	1.38 (1)		C5'B	$\mathrm{C}^{6}{ }^{\text {B }}$	1.38 (1)	
C5" ${ }^{\text {A }}$	C6" A	1.51 (1)		C5 ${ }^{\prime \prime}$ B	C6"B	1.49 (1)	
C6A	C7A	1.39 (1)		C6B	C7B	1.40 (1)	
C7A	C8A	$1 \cdot 40$ (1)		C7B	C8B	1.40 (1)	
C8A	C9A	1.38 (1)		C8B	C9B	1.37 (1)	
C9A	Cl 10 A	1.41 (1)		C9B	C10B	1.40 (1)	
C2A	O1A	C9A	120.5 (6)	$\mathrm{Cl}^{\prime \prime} A$	C8A	C9A	124.5 (7)
C7A	07A	CliA	118.0 (6)	C7A	C8A	C9A	116.2 (7)
$\mathrm{Cl}{ }^{\prime \prime}{ }^{\text {A }}$	O7" ${ }^{\text {a }}$	C5'A	111.2 (7)	O1A	C9A	C8A	117.5 (7)
C2A	$\mathrm{Cl}^{\prime} \boldsymbol{A}$	$\mathrm{C}^{\prime}{ }^{\text {A }}$	120.4 (8)	O1A	C9A	Cl0A	121.3 (7)
C2A	Cl^{\prime} A	C6' A	120.6 (8)	C8A	C9A	C10A	121.0 (7)
$\mathrm{C}^{\prime}{ }^{\text {A }}$	Cl^{\prime} A	C6' ${ }^{\text {a }}$	119.0 (8)	C4A	C10A	C5A	122-2 (8)
O7" ${ }^{\text {a }}$	$\mathrm{Cl}^{\prime \prime}{ }^{\text {A }}$	C2'A	108.7 (6)	C4A	C10A	C9A	117.6 (8)
O7" ${ }^{\text {a }}$	$\mathrm{Cl}^{\prime \prime} A$	C8A	108.9 (8)	C5A	C10A	C9A	$120 \cdot 2$ (7)
$\mathrm{C}^{\prime \prime}{ }^{\text {A }}$	$\mathrm{Cl}^{\prime \prime} A$	C8A	114.3 (8)	C2B	O1B	C9B	122.3 (6)
O1A	C2A	$\mathrm{Cl}^{\prime} A$	$111 \cdot 3$ (7)	C4" ${ }^{\text {B }}$	C5B	C6 ${ }^{\prime \prime}$ B	113.2 (7)
O1A	C2A	C3A	122.0 (8)	C5B	C6B	C7B	119.1 (8)
$\mathrm{Cl}^{\prime} A$	C2A	C3A	126.6 (8)	$\mathrm{Cl}^{\prime} B$	C6' B	C5' B	121.3 (9)
$\mathrm{Cl}^{\prime} A$	C2'A	$\mathrm{C} 3^{\prime} A$	119.9 (9)	O7B	C7B	C6B	122.4 (7)
$\mathrm{Cl}^{\prime \prime} \mathrm{A}$	C2"A	C3'A	109.0 (7)	O7B	C7B	C8B	115.8 (7)
C2A	C3A	C4A	121.0 (8)	C6B	C7B	C8B	121.6 (8)
$\mathrm{C}^{\prime}{ }^{\prime}$ A	C3' ${ }^{\text {A }}$	C4' A	120.3 (9)	$\mathrm{Cl}^{\prime \prime}{ }^{B}$	C8B	C7B	119.4 (7)
$\mathrm{O}^{\prime \prime}{ }^{\prime} A$	$\mathrm{C}^{\prime \prime}{ }^{\prime}$	$\mathrm{C}^{\prime \prime}{ }^{\text {A }}$	106.7 (7)	C1"B	C8B	C9B	123.5 (7)
O3" A	C3" ${ }^{\text {A }}$	$\mathrm{C4} 4^{\prime \prime}{ }^{\text {a }}$	111.3 (7)	C7B	O7B	C11B	118.8 (6)
$\mathrm{C} 2^{\prime \prime}{ }^{\text {A }}$	$\mathrm{Cl}^{\prime \prime}{ }^{\text {A }}$	$\mathrm{C} 4^{\prime \prime}$ A	110.9 (7)	$\mathrm{Cl}^{\prime \prime} \mathrm{B}$	O7'B	C5'B	111.3 (6)
O4A	C4A	C3A	121.9 (8)	C2B	$\mathrm{Cl}^{\prime} B$	C2'B	120.1 (8)
O4A	C4A	C10A	120.7 (8)	C2B	$\mathrm{Cl}^{\prime} \boldsymbol{B}$	$\mathrm{Cb}^{\prime}{ }^{\text {B }}$	120.9 (8)
C3A	C4A	C10A	117.4 (8)	C2'B	$\mathrm{Cl}^{\prime} \boldsymbol{B}$	$\mathrm{C6}^{\prime} B$	119.1 (8)
$\mathrm{OH}^{\prime} \mathrm{A}$	C4'A	C3' ${ }^{\text {A }}$	118.6 (9)	$07^{\prime \prime} B$	C1" ${ }^{\text {B }}$	C2 ${ }^{\prime \prime}$ B	109.7 (6)
O4' A	C4' A	C5'A	120.2 (9)	07" B	$\mathrm{Cl}^{\prime \prime}{ }^{B}$	C8B	108.2 (8)
$\mathrm{C}^{\prime}{ }^{\text {A }}$	C4' ${ }^{\text {a }}$	C5'A	121.3 (9)	$\mathrm{C}^{\prime \prime}{ }^{\prime \prime}{ }^{\text {B }}$	$\mathrm{Cl}^{\prime \prime}{ }^{\text {B }}$	C8B	112.9 (8)
$04^{\prime \prime}{ }^{\text {B }}$	$\mathrm{C4} 4^{\prime \prime}$ B	C5 ${ }^{\prime \prime}$ B	114.2 (8)	O1B	C2B	$\mathrm{Cl}^{\prime} B$	110.6 (7)
C3" B	$C 4^{\prime \prime} B$	$C 5{ }^{\prime \prime} B$	112.2 (6)	O1B	C2B	C3B	121.3 (8)
O5B	C5B	C6B	119.1 (7)	$\mathrm{Cl}^{\prime} \mathrm{B}$	C2B	C3B	128.1 (8)
OSB	C.5B	C10B	120.3 (8)	$\mathrm{Cl}^{\prime} \mathrm{B}$	$\mathrm{C}^{\prime}{ }^{\text {B }}$	C3' B	121.3 (8)
C6B	C5B	C10B	120.6 (8)	$\mathrm{Cl}^{\prime \prime} \mathrm{B}$	C2'B	$\mathrm{C3}^{\prime \prime}{ }^{\text {B }}$	$110 \cdot 2$ (8)
C4' ${ }^{\text {B }}$	$\mathrm{C}^{\prime} \mathrm{B}$	C6' ${ }^{\prime}$	119.0 (9)	C2B	C3B	C4B	120.6 (8)
$07^{\prime \prime}$ B	C5 ${ }^{\prime \prime}$ B	C4"B	109.8 (7)	$\mathrm{C}^{\prime}{ }^{\text {B }}$	C3' B	$\mathrm{C}^{\prime} \mathrm{B}^{\prime}$	118.6 (8)
$07^{\prime \prime} B$	C5 ${ }^{\prime \prime}$ B	C6 ${ }^{\prime \prime}{ }^{\text {B }}$	$106 \cdot 1$ (7)	$\mathrm{O3}^{\prime \prime}$ B	C3" ${ }^{\text {B }}$	C2 ${ }^{\prime \prime}$ B	$106 \cdot 0$ (7)
O4" ${ }^{\text {a }}$	C4" ${ }^{\prime \prime}$	C 3 " A	108.3 (8)	O3"B	C3" ${ }^{\text {B }}$	C4'B	$110 \cdot 6$ (7)
O4" A	C4" ${ }^{\prime}$	C5 ${ }^{\prime \prime}$ A	106.8 (7)	$\mathrm{C} 2{ }^{\prime \prime}{ }^{\text {B }}$	C3" ${ }^{\text {B }}$	C4"B	110.9 (8)
$\mathrm{C}^{\prime \prime}{ }^{\text {A }}$	C4" ${ }^{\text {a }}$	C5" A	111.6 (7)	O4B	C4B	C3B	119.7 (8)
O5A	C5A	C6A	$120 \cdot 6$ (8)	O4B	C4B	C10B	123.7 (8)
O5A	C5A	Cl0A	118.9 (8)	C3B	C4B	C10B	116.5 (7)
C6A	C5A	C10A	120.6 (7)	$\mathrm{O}^{\prime} B$	C4' B	C3'B	116.0 (9)
C4'A	C5'A	C6'A	118.2 (9)	O4'B	C4'B	C5'B	123.2 (9)
O7' ${ }^{\prime \prime}$	C5 ${ }^{\prime \prime}$ A	C4" ${ }^{\text {a }}$	108.6 (7)	$\mathrm{C}^{\prime}{ }^{\text {B }}$	C4'B	C5 ${ }^{\text {B }}$	120.6 (8)
07" A	$\mathrm{C}^{\prime \prime}{ }^{\text {A }}$	C6" ${ }^{\prime}$	106.3 (8)	O4"B	C4" ${ }^{\text {B }}$	$\mathrm{C3}^{\prime \prime} \mathrm{B}^{\text {B }}$	106.0 (7)
C4'A	$\mathrm{C5}^{\prime \prime} A$	C6" ${ }^{\text {a }}$	111.9 (8)	C7B	C8B	C9B	117.1 (7)
C5A	C6A	C7A	117.5 (8)	O1B	C9B	C8B	117.2 (7)
$\mathrm{Cl}^{\prime} A$	C6' ${ }^{\text {a }}$	C5'A	121.3 (8)	O1B	C9B	C10B	119.5 (7)
07A	C7A	C6A	119.9 (7)	C8B	C9B	C10B	123.2 (8)
O7A	C7A	C8A	$115 \cdot 7$ (7)	C4B	C10B	C5B	122.2 (7)
C6A	C7A	C8A	124.3 (8)	C4B	C10B	C9B	119.7 (7)
$\mathrm{Cl}^{\prime \prime} A$	C8A	C7A	119.3 (8)	C5B	C10B	C9B	118.1 (8)

$D-\mathrm{H} \cdots A$	$D \cdots A(\AA)$	$D-\mathrm{H} \cdots A\left({ }^{\circ} \mathrm{C}\right.$		Symmetry operation*
O4'B-H6B ${ }^{\prime}$ O4A	2.67 (1)	179	(iii)	00-1
O4" A - $\mathrm{H} 15 A^{\cdots} \mathrm{O} 4 B$	2.81 (1)	150	(iii)	-10-1
OW3-HW31 ${ }^{\circ} \mathrm{O} 7^{\prime \prime} A$	2.93 (1)	176	(i)	000
OW2-HW2 ${ }^{\text {O }} \mathrm{O}^{\prime \prime}$ A	2.928 (6)	145	(iii)	$-10-1$
$\mathrm{O}^{\prime \prime} \mathrm{B}-\mathrm{H} 13 B^{\prime \cdots} \mathrm{O}^{\prime \prime} A$	2.80 (1)	150	(i)	000
$\mathrm{O} W 3-\mathrm{H} W 32 \cdots \mathrm{O} 3^{\prime \prime}$ B	2.77 (1)	177	(i)	0-10
O4' A^{\prime} - $\mathrm{H} 6 A^{\cdots} \mathrm{OW} 4$	2.60 (1)	163		$0 \quad 1 \cdots 1$
OW4-HW41 \cdots OW3	2.62 (1)	165	(i)	000
O4'B-H15B ${ }^{\prime \prime} \mathrm{OW} 2$	2.78 (1)	174	(iii)	-1-1-1
$\mathrm{O} W 1-\mathrm{H} W 1 \cdots{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\text {P }}$	2.82 (1)	140	(i)	000
O3" ${ }^{\prime \prime}$ - $\mathrm{HI} 3 A^{\cdots} \mathrm{OW}$	$2 \cdot 863$ (6)	143	(i)	000
* Translations ar operators defined (iv) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-$	long x, y (i) $x, y=$	and z, respe (ii) $-x, y$,	ely, (iii)	with the sy $\frac{1}{2}+x, \frac{1}{2}+$

Intramolecular hydrogen bonding occurs between the hydroxyl and ketonic O atoms of the flavone ring system. In molecule B, the hydroxyl H atom, $\mathrm{H} 2 B$, located directly from the difference Fourier map, shows hydrogen bonding to the ketonic O atom, $\mathrm{O} 4 B \quad(\mathrm{O} 5 B-\mathrm{H} 2 B=1 \cdot 21, \quad \mathrm{O} 5 B \cdots \mathrm{O} 4 B=2.61(1)$, $\mathrm{H} 2 B \cdots \mathrm{O} 4 B=1.76 \AA$ and $\left.\mathrm{O} 5 B-\mathrm{H} 2 B \cdots \mathrm{O} 4 B=122^{\circ}\right)$. The related H atom was not located for molecule A; however, its presence is inferred from the distance of $\mathrm{O} 5 \cdots \mathrm{O} 4 A=2.514$ (9) \AA and the absence of other short contacts to O 5 A . The intramolecular hydrogen bonding of aciculatin is similar to that exhibited in the related hydroxyflavones, hymenoxin (Watson, Kashyap, Gao \& Mabry, 1991), 3-hydroxyflavone (Etter, Urbanczyk-Lipkowska, Baer \& Barbara, 1986) or 5 -hydroxyflavone (Shoja, 1990), 5-hydroxy-7-methoxyflavone (Shoja, 1989), 5,4'-dihydroxy-3,6,7,8-tetramethoxyflavone (Vijayalakshmi, Rajan, Srinivasan \& Ramachandran Nair, 1986) and $4^{\prime}, 5,7-$ trihydroxyisoflavone (Breton, Precigoux, Courseille \& Hospital, 1975).

The 2,6-dideoxy- β-ribo-hexopyranosyl ring is linked to C 8 of the flavone through a $\beta-C$-glycosidic bond. The hexopyranosyl ring adopts a chair conformation with $\mathrm{Cl}^{\prime \prime}$ and $\mathrm{C}^{\prime \prime}$ located on opposite sides of the plane generated by $\mathrm{C}^{\prime \prime}-\mathrm{C}^{\prime \prime}-\mathrm{C}^{\prime \prime}-\mathrm{O}^{\prime \prime}$. This is similar to both pyran rings in isokidamycin bis(m-bromobenzoate) (Furukawa \& Iitaka, 1974, 1980) or one of the pyran rings (ring E) in triacetylmethoxykidamycin bis(trimethylammonium) iodide (Furukawa, Itai \& Iitaka, 1973; Furukawa \& Iitaka, 1974) and the β-D-glucosyl ring in 5-hydroxy$3^{\prime}, 6$-dibromo- $2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime}, 4^{\prime \prime}, 6^{\prime \prime}, 7$-hexaacetylvitexin (Jurnak \& Templeton, 1975). The $4^{\prime \prime}-\mathrm{OH}$ and $5^{\prime \prime}-\mathrm{CH}_{3}$ substituents adopt equatorial positions while the $3^{\prime \prime}$-OH substituent adopts an axial position. As with the vitexin derivative, the plane of the hexopyranosyl ring is essentially perpendicular to the benzopyran ring [molecule $A 91.4$ (3), molecule $B 88.9$ (3) ${ }^{\circ}$] in order to minimize steric interactions.

The two independent molecules of aciculatin also differ in the magnitude of the torsion angles associated with the hydroxyl groups on the phenolic and
hexopyranosyl rings. The $4^{\prime}-\mathrm{OH}$ [$\mathrm{C}^{\prime} A-\mathrm{C}^{\prime} A-$ $\mathrm{O}^{\prime} A-\mathrm{H} 6 A=-8$ (1) and $\mathrm{C} 5^{\prime} B-\mathrm{C}^{\prime} B-\mathrm{O}^{\prime} B-$ $\mathrm{H} 6 B=30(2)^{\circ}$] and $3^{\prime \prime}-\mathrm{OH}\left(\mathrm{C}^{\prime \prime} A-\mathrm{C} 3^{\prime \prime} A-\mathrm{O}^{\prime \prime} A-\right.$ $\mathrm{H} 13 A=93 \cdot 1$ (8) and $\mathrm{C}^{\prime \prime} B-\mathrm{C}^{\prime \prime} B-\mathrm{O}^{\prime \prime} B-\mathrm{H} 13 B$ $\left.=74 \cdot 9(7)^{\circ}\right]$ torsion angles are moderately different. The largest difference in torsion angles occurs with the $4^{\prime \prime}$-hydroxyls $\left[\mathrm{C}^{\prime \prime} A-\mathrm{C}^{\prime \prime} A-\mathrm{O} 4^{\prime \prime} A-\mathrm{H} 15 A=\right.$ 128.4 (7) and $\mathrm{C} 5^{\prime \prime} B-\mathrm{C} 4^{\prime \prime} B-\mathrm{O}^{\prime \prime} B-\mathrm{H} 15 B=$ $\left.64 \cdot 6(8)^{\circ}\right]$.

Intermolecular hydrogen bonding (Table 3) occurs between $\mathrm{O}^{\prime \prime} A$ and $\mathrm{O} 3^{\prime \prime} B\left[\mathrm{O}^{\prime \prime} B \cdots{ }^{\circ} \mathrm{O}^{\prime \prime} A=2 \cdot 80\right.$ (1) \AA and 150°] of the two independent molecules. In addition, hydrogen bonding occurs between the ketonic O atom $\mathrm{O} 4 A$ and the phenolic O atom $\mathrm{O}^{\prime} B$ [$\mathrm{O} 4^{\prime} B \cdots \mathrm{O} 4 A=2 \cdot 67$ (1) \AA and 179°] and between the ketonic O atom $\mathrm{O} 4 B$ and the hydroxyl O atom $\mathrm{O}^{\prime \prime} A$ [$\mathrm{O} 4^{\prime \prime} A \cdots \mathrm{O} 4 B=2 \cdot 81$ (1) \AA and $\left.150^{\circ}\right]$. There is also a network of hydrogen-bonding interactions between the aciculatin molecules and the water molecules which stabilizes the crystal lattice.

This work was supported in part by grant No. GM39S26-02 from the National Institutes of Health. JAK thanks the NIH for postdoctoral support under this grant.

References

Breton, M., Precigoux, G., Courseille, C. \& Hospital, M. (1975). Acta Cryst. B31, 921-923.

Carte, B., DeBrosse, C., Offen, P., Carr, S., Hemling, M., Berry, D. E., Mackenzie-LoCastro, L. \& Westley, J. W. (1991). Tetrahedron. Submitted.

Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.

Etter, M. C., Urbanczyk-Lipkowska, Z., Baer, S. \& Barbara, P. F. (1986). J. Mol. Struct. 144, 155-167.

Furukawa, M. \& Iitaka, Y. (1974). Tetrahedron Lett. pp. 3287-3290.
Furukawa, M. \& Iitaka, Y. (1980). Acta Cryst. B36, 22702276.

Furukawa, M., Itai, A. \& Iitaka, Y. (1973). Tetrahedron Lett. 1065-1068.
Glusker, J. P. \& Rossi, M. (1986). Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and StructureActivity Relationships, edited by V. Cody, E. Middleton Jr, \& J. Harborne, pp. 395-410. New York: Alan R. Liss.

Hayashi, T., Kawai, S., Ohno, T., Iitaka, Y. \& Akimoto, T. (1974). Chem. Pharm. Bull. 22, 1219-1226.

Jurnak, F. A. \& Templeton, D. H. (1975). Acta Cryst. B31, 1304-1309.
Mariezcurrena, R. A. (1978). Acta Cryst. B34, 2322-2324.
Mayer, F. \& Cook, A. H. (1943). The Chemistry of Natural Colouring Matters. New York: Rheingold.
Rossi, M., Cantrell, J. S., Farber, A. J., Dyott, T., Carrell, H. L. \& Glusker, J. P. (1980). Cancer Res. 40, 27742784.

Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Shoja, M. (1989). Acta Cryst. C45, 828-829.
Shoja, M. (1990). Acta Cryst. C46, 517-519.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3176-3187.
Ting, H.-Y., Watson, W. H. \& Dominguez, X. A. (1972). Acta Cryst. B28, 1046-1051.
Tomlin, D. W. \& Cantrell, J. S. (1990). Acta Cryst. C46, 519-521.
Vijayalakshmi, J., Rajan, S. S., SrinivaSan, R. \& Ramachandran Nair, A. G. (1986). Acta Cryst. C42, 17521754.

Vleggaar, R., Kruger, G. J., Smalberger, T. M. \& van den Berg, A. J. (1978). Tetrahedron, pp. 1405-1408.
Watson, W. H., Kashyap, R. P., Gao, F. \& Mabry, T. J. (1991). Acta Cryst. C47, 459-461.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Structure of Cortivazol, $11 \beta, 17 \alpha, 21-T r i h y d r o x y-6,16 \alpha$-dimethyl-2'-phenyl-2' H -pregna-2,4,6-trieno[3,2-c]pyrazol-20-one 21-Acetate

By Edmund W. Czerwinski
Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, Texas 77550, USA

(Received 7 February 1991; accepted 29 May 1991)

Abstract

C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}, M_{r}=530 \cdot 7\), monoclinic, $C 2$, $a=30 \cdot 625$ (5), $b=6 \cdot 229$ (2), $c=15 \cdot 289$ (2) $\AA, \beta=$ 93.86 (2) ${ }^{\circ}, V=2909.8 \AA^{3}, Z=4, D_{x}=1.211 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.5418 \AA, \mu=6.2 \mathrm{~cm}^{-1}, F(000)=1136$, $T=292 \mathrm{~K}$, final $R=0.047$ for 2415 reflections with I $>2 \cdot 5 \sigma(I)$. All bond lengths and angles are within normal limits. Ring A with two double bonds is not

planar, but is in the $1 \alpha, 10 \beta$ half-chair conformation. Ring B is in a $9 \alpha, 10 \beta$ half-chair conformation distorted towards a 9α sofa. Ring C is in the expected chair conformation, whereas ring D is in the 13β envelope conformation. The C20, C26, C27 and N29 substituents are equatorial, $\mathrm{O} 11, \mathrm{C} 18$ and C 19 are β axial, and O 17 and C25 are α axial. Rings C and D

[^0]: * Lists of anisotropic displacement parameters, selected torsion angles, least-squares planes, H -atom positions and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54288 (22 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 12 HU , England.

