Structure of 8-(2,6-Dideoxy-*β-ribo*-hexopyranosyl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4*H*-1-benzopyran-4-one Sesquihydrate, Aciculatin

BY JEANETTE A. KRAUSE AND DRAKE S. EGGLESTON

Department of Physical and Structural Chemistry, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA

(Received 27 August 1990; accepted 29 May 1991)

Abstract. $C_{22}H_{22}O_8.1\cdot 5H_2O$, $M_r = 441\cdot 4$, monoclinic, I2, $a = 21\cdot037$ (7), $b = 7\cdot371$ (2), $c = 27\cdot512$ (4) Å, β $= 100\cdot34$ (2)°, $V = 4196\cdot 8$ (8) Å³, Z = 8, $D_x =$ $1\cdot397$ g cm⁻³, λ (Mo $K\overline{\alpha}$) = 0.71073 Å, $\mu =$ $1\cdot029$ cm⁻¹, F(000) = 1864, T = 295 K, final R (on F) = 0.058 for 2113 observed reflections with $I \ge 2\sigma(I)$. Aciculatin crystallizes as a sesquihydrate with two independent molecules per asymmetric unit. The 2,6-dideoxy- β -*ribo*-hexopyranosyl ring is linked to C8 of the flavone through a β -C-glycosidic bond. Intramolecular hydrogen bonding occurs between the hydroxyl and ketonic O atoms of the flavone ring system.

Introduction. Flavonoids are a naturally occurring class of plant pigments which frequently occur as glycosides containing either a glucose or rhamnose sugar moiety (Mayer & Cook, 1943). These pigments display a variety of therapeutic properties including anti-carcinogenic, anti-inflammatory, antioxidant and anti-allergenic activities (Glusker & Rossi, 1986).

The present crystallographic study was carried out to confirm the molecular structure of aciculatin, a flavonoid isolated from the plant *Chrysopogon aciculatis* (Carte, DeBrosse, Offen, Carr, Hemling, Berry, Mackenzie-LoCastro & Westley, 1991).

Experimental. Yellow plates were obtained from slow evaporation of an aqueous ethanol solution at room temperature. A suitable crystal of approximate dimensions $0.3 \times 0.3 \times 0.05$ mm was mounted on the tip of a glass fiber with epoxy resin and used in the diffraction study.

Intensity data were collected at room temperature on an Enraf-Nonius CAD-4 diffractometer with graphite-monochromated Mo K α radiation. Lattice parameters obtained by least-squares refinement of angular settings from 25 reflections in 2 θ range 24-30°. Intensity data (5603 reflections) collected using variable speed ω -2 θ scans with $2 \le 2\theta \le 56^{\circ}$ (0 $\le h \le 27$, $0 \le k \le 9$, $-36 \le l \le 36$). Three standard reflections ($\overline{3},3,\overline{10}, 4,\overline{3},11, 9\overline{36}$) monitored every 3 h of X-ray exposure time showed intensity changes of

-5.6%; a correction for deterioration was made (correction: min. 1.000, max. 1.0290). Symmetryequivalent data were averged, $R_{int} = 4.7\%$ (on *I*); the 5460 unique reflections were corrected for Lorentz and polarization effects.

The structure was solved by direct methods with SHELXS86 (Sheldrick, 1985). The y coordinate of atom OW1 was held fixed to define the origin. Non-H atoms were refined with isotropic temperature factors, then with anisotropic displacement parameters. Most of the H-atom positions were located from difference Fourier maps; those not located were calculated at C-H = 1.00 Å. H-atom coordinates were held fixed at the located or calculated positions along with fixed isotropic temperature factors $(1.3 \times B_{eq})$ of the adjacent atom). The positions of HW42 and hydroxyl hydrogen, H2A, were not determined. The final refinement converged (max. $\Delta/\sigma = 0.02$) to values of the standard crystallographic agreement factors of R = 0.058, wR =0.065 and S = 1.179 for 2113 reflections with $I \ge 1.056$ $2\sigma(I)$ and 569 parameters. The function minimized was $\sum w(|F_a| - |F_c|)^2$. Weights were assigned to the data as $w = 4F_o^2/\sigma^2(I)$ where $\sigma(I) = [\sigma(I)^2 +$ $(0.07F_0)^2$ ^{1/2}. An extinction coefficient of the form proposed by Zachariasen (1963) was applied and refined: $g = 1.80(1) \times 10^{-7}$. OW1 and OW2 were located on special crystallographic positions with occupancies of 0.5. Neutral atom scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV) except for H atoms (Stewart, Davidson & Simpson, 1965). The effects of anomalous dispersion for non-H were included. A final difference Fourier map showed max. excursions of $(\Delta \rho)_{\text{max}} = 0.253$ to $(\Delta \rho)_{\text{min}} = -0.238 \text{ e} \text{ Å}^{-3}$. The atomic coordinates and equivalent isotropic thermal parameters are collected in Table 1.* All programs

© 1991 International Union of Crystallography

^{*} Lists of anisotropic displacement parameters, selected torsion angles, least-squares planes, H-atom positions and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54288 (22 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

 Table 1. Positional and equivalent isotropic thermal parameters with e.s.d.'s

 $B_{\rm eq} = (8\pi^2/3)\sum_i\sum_i U_{ij}a_i^*a_j^*a_j.a_j.$

	x	v	Z	$B(Å^2)$
01 <i>A</i>	0.2695 (2)	0.8396 (9)	-0.1610 (2)	3.2 (1)
O3''A	0.1033 (2)	0.6017 (9)	- 0.0495 (2)	3.7 (1)
04 <i>A</i>	0.4627 (2)	0.837 (1)	-0.1602 (2)	6.2 (2)
04'A	0.0913 (3)	0·878 (1)՝	-0.3664 (2)	7.3 (2)
04‴A	0.0129 (2)	0.832 (1)	-0.1005 (2)	3.5 (1)
05A	0-4830 (2)	0.803 (1)	-0.0678 (2)	6.8 (2)
07//	0.2994 (2)	0.796 (1)	0.0113 (2)	4.1 (2)
O/ A	0.1812(2)	0.9665 (8)	-0.0952 (2)	2.9 (1)
	0.2407 (4)	0.804 (1)	-0.2467(3) -0.0750(3)	3.6 (2)
\mathcal{O}_{A}	0-2930 (3)	0.857(1)	-0.0730(3)	2.0 (2)
C2'A	0.1769 (4)	0.892(1)	-0.2405(5)	3.9 (2)
C2''A	0.1774 (3)	0.642(1)	-0.1039(3)	2.8 (2)
C3A	0.3560 (4)	0.864 (2)	- 0.2043 (3)	4.3 (3)
C3'A	0.1281 (4)	0.900 (2)	-0.2812 (3)	4.5 (3)
C3‴A	0.1061 (3)	0.644 (1)	-0·0995 (3)	2.3 (2)
C4A	0.4021 (4)	0.843 (2)	-0.1600 (3)	4.7 (3)
C4'A	0.1412 (4)	0.872 (2)	- 0.3270 (3)	4.7 (3)
C4"A	0.0759 (3)	0.827 (1)	-0.1143 (3)	2.6 (2)
CSA CS'A	0.4184 (4)	0.808(2)	- 0.0692 (3)	4.5 (2)
CS A	0.2044(4) 0.1147(4)	0.844 (2)	-0.3345(3)	4.2 (2)
C5 A	0.3034(4)	0.705 (2)	-0.0361(3)	3.3 (2)
C6'A	0-2533 (4)	0.839 (2)	-0.201(3)	4.3 (2)
C6"A	0.0900 (4)	1.164(1)	-0.1063(4)	4.8 (3)
C7A	0.3266 (3)	0.802(1)	-0.0303(3)	3.2 (2)
C8A	0.2834 (3)	0.812 (1)	-0.0750(3)	3.1 (2)
C9A	0.3103 (3)	0.829 (1)	-0.1170(3)	2.8 (2)
C10A	0.3778 (3)	0.827 (2)	-0.1143 (3)	3.7 (2)
CHA	0.3420 (4)	0.787 (2)	0.0285 (3)	6.0 (3)
01 <i>B</i>	0.2703 (2)	0.2042 (9)	0.2072 (2)	3.0 (1)
03″ <i>B</i>	0.1945 (2)	0-4285 (8)	0.0224 (2)	2.9 (1)
048	0.4239 (2)	0.194 (1)	0.3198 (2)	4.5 (2)
04''B	- 0.0039 (2)	0.213(1)	0.2567 (2)	6.5 (2)
	0.0092 (2)	0.2142 (9)	0.0248 (2)	3·4 (1)
035	0.4994(2) 0.3075(2)	0.208 (1)	0.0858 (2)	3·3 (2) 5.1 (2)
07″ R	0.2382(2)	0.0709 (8)	0.1076 (2)	2.6(1)
	0.1920(3)	0.202(1)	0.2561(3)	2.9 (2)
CI"B	0.2747(3)	0.231(1)	0.1051(2)	2.5(2)
C2B	0.2610 (4)	0.202(1)	0.2542(3)	3.0(2)
C2'B	0.1474 (4)	0.159 (1)	0.2144 (3)	3.2 (2)
C2‴B	0.2319 (4)	0.399 (1)	0.1087 (3)	3.1 (2)
C3 <i>B</i>	0.3116 (4)	0.198 (1)	0-2925 (3)	3.3 (2)
C3'B	0.0819 (4)	0.162 (1)	0.2148 (3)	3.9 (2)
C3‴B	0.1719 (4)	0.393 (1)	0.0679 (3)	2.8 (2)
C4B	0.3772 (4)	0.198 (1)	0.2836 (3)	3.7 (2)
C4'B	0.1202 (2)	0.215 (2)	0.2583(3)	4.2 (2)
	0.1392(3)	0.210 (1)	0.0001 (3)	$2 \cdot 7 (2)$
CS'B	0.1050 (4)	0.210(2)	0.2006 (3)	3.6 (2)
C5"B	0.1864(3)	0.254(2)	0.0657 (3)	2.3 (2)
C6B	0.4516 (4)	0.231(2)	0.1704(3)	4.5 (2)
C6'B	0.1703 (4)	0.247(1)	0.2990 (3)	3.3(2)
C6''B	0.1569 (4)	-0.127(1)	0.0696 (3)	3.2 (2)
С7В	0.3955 (3)	0.241 (1)	0.1342 (3)	3.2 (2)
C8 <i>B</i>	0.3340 (3)	0.224 (1)	0.1462 (3)	2.8 (2)
C9 <i>B</i>	0.3305 (3)	0.209 (1)	0.1952 (3)	2.7 (2)
C10B	0.3852 (3)	0.210 (1)	0.2330 (3)	2.8 (2)
CIIB	0.4590 (4)	0.282 (2)	0.0709 (3)	7.8 (4)
0//1	0.000	0.500	0.000	3.8 (2)
01/2	0.2616 (2)	0.430 (1)	0.0419 (2)	5.0 (2)
0113	0.2010 (3)	1.202 (1)	-0.0418 (2)	5.7 (2) 12.5 (4)

used were from the locally modified Enraf-Nonius (1979) *Structure Determination Package*.

Discussion. Aciculatin crystallizes as a sesquihydrate with two independent molecules per asymmetric unit. The molecular structure of molecule B is presented in Fig. 1. Selected bond distances and bond angles are listed in Table 2. Intermolecular hydrogen bonding interactions are collected in Table 3.

The flavone distances and angles are comparable to those in 4'-bromo-5-hydroxyflavone or 4'-bromo-3-hydroxyflavone (Hayashi, Kawai, Ohno, Iitaka & Akimoto, 1974), hymenoxin (Watson, Kashyap, Gao & Mabry, 1991), glabratephrin (Vleggaar, Kruger, Smalberger & van den Berg, 1978), 3-chloroflavanone (Tomlin & Cantrell, 1990), 3-hydroxyflavone (Etter, Urbanczyk-Lipkowska, Baer & Barbara, 1986) or 5-hydroxyflavone (Shoja, 1990), 5-hydroxy-7-methoxyflavone (Shoja, 1989), 5,4'-dihydroxy-3.6.7.8-tetramethoxyflavone (Vijavalakshmi, Rajan, Srinivasan & Ramachandran Nair, 1986), 3',5,5',6tetramethoxyflavone (Ting, Watson & Dominguez, 1972), 4',5,7-trihydroxyisoflavone (Breton, Precigoux, Courseille & Hospital, 1975), 5,7,4'-trimethoxyflavanone (Mariezcurrena, 1978), and 5-hydroxy-6-bromo-2",3",4',4",6",7-hexaacetylvitexin or 5-hydroxy-3',6-dibromo-2",3",4',4",6",7-hexaacetylvitexin (Jurnak & Templeton, 1975).

The benzopyran is virtually planar; the dihedral angle between planar ring halves is 1 (2)° for molecule A and 3.1 (6)° for molecule B. The phenolic substituent is planar, but is not coplanar to the benzopyran in either molecule as evidenced by the C3-C2-C1'-C6' torsion angles of 14 (2) and 18 (2)° for molecules A and B, respectively. The twisting of the phenolic ring is a result of steric and electronic effects. Theoretical calculations (Glusker & Rossi, 1986; Rossi, Cantrell, Farber, Dyott, Carrell & Glusker, 1980) suggest that for flavones with an H atom at position 3 a torsion angle of 22.8° results in a minimum-energy conformation.

Fig. 1. Molecular structure of aciculatin (molecule B) showing labelling scheme. Non-H atoms are drawn with ellipsoids of 50% probability, H atoms are represented as spheres of arbitrary size.

Table 2. Selected bond distances (Å) and angles (°) Table 3. Intermolecular hydrogen-bonding interactions with e.s.d.'s

014 013 037 044 047 047 054 077 077 077 077 077 077 077 077 077 07	C2A C9A C3'A C4'A C4'A C7A C1IA C1'A C2A C2A C2A C2A C2A C3A C3'A C3'A C3'A C4'A C4'A C4'A C4'A C4'A C4'A C4'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C4'A C4'A C4'A C4'A C4'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C4'A C4'A C5'A C7	$\begin{array}{c} 1.361 \ (9)\\ 1.353 \ (9)\\ 1.424 \ (9)\\ 1.28 \ (1)\\ 1.28 \ (1)\\ 1.37 \ (1)\\ 1.443 \ (9)\\ 1.37 \ (1)\\ 1.37 \ (1)\\ 1.37 \ (1)\\ 1.441 \ (1)\\ 1.441 \ (1)\\ 1.46 \ (1)\\ 1.46 \ (1)\\ 1.46 \ (1)\\ 1.46 \ (1)\\ 1.46 \ (1)\\ 1.46 \ (1)\\ 1.46 \ (1)\\ 1.46 \ (1)\\ 1.46 \ (1)\\ 1.46 \ (1)\\ 1.52 \ (1)\\ 1.52 \ (1)\\ 1.53 \ (1)\\ 1.51 \ (1)\\ 1.51 \ (1)\\ 1.51 \ (1)\\ 1.58 \ (1)\\ 1.58 \ (1)\\ 1.58 \ (1)\\ 1.58 \ (1)\\ 1.58 \ (1)\\ 1.58 \ (1)\\ 1.58 \ (1)\\ 1.38 \ (1)\\ 1.51 \ (1)\\ 1.38 \ (1)\\ 1.51 \ (1)\\ 1.38 \ (1)\\ 1.51 \ (1)\\ 1.38 \ (1)\\ 1.51 \ (1)\\ 1.38 \ (1)\\ 1.51 \ (1)\\ 1.38 \ (1)\\ 1.51 \ (1)\\ 1.38 \ (1)\\ 1.51 \ (1)\\ 1.38 \ (1)\\ 1.40 \ (1)\\ 1.38 \ (1)\\ 1.41 \ (1)\\ 1.41 \ (1)\\ 1.41 \ (1)\\ 1.41 \ (1)\\ 1.41 \ (1)\\ 1.51 \ (1)\ (1)\ (1)\ (1)\ (1)\ (1)\ (1)\ ($		01 <i>B</i> 01 <i>B</i> 03" <i>B</i> 04' <i>B</i> 04' <i>B</i> 05 <i>B</i> 07 <i>B</i> 07" <i>B</i>	C2B C9B C4B C4B C4B C4B C5B C1B C5B C2B C2B C2B C2B C2B C3B C3B C3B C3B C4B C4B C4B C4B C4B C5B C5B C5B C5B C5B C5B C5B C5B C5B C10B C5B C10B C10B C5B C10B C5B C5B C10B C5B C10B C10B C5B C10B C10B C5B C10B C10B C5B C10B C10B C10B C10B C10B C10B C10B C10	$\begin{array}{c} 1.34 \ (1) \\ 1.367 \ (9) \\ 1.44 \ (1) \\ 1.267 \ (9) \\ 1.356 \ (9) \\ 1.356 \ (9) \\ 1.356 \ (9) \\ 1.356 \ (9) \\ 1.404 \ (9) \\ 1.343 \ (9) \\ 1.442 \ (1) \\ 1.422 \ (1) \\ 1.442 \ (1) \\ 1.442 \ (1) \\ 1.442 \ (1) \\ 1.53 \ (1) \\ 1.54 \ (1) \\ 1.53 \ (1) \\ 1.53 \ (1) \\ 1.53 \ (1) \\ 1.53 \ (1) \\ 1.51 \ (1) \\ 1.51 \ (1) \\ 1.51 \ (1) \\ 1.53 \ (1) \\ 1.51 \ (1) \\ 1.53 \ (1) \\ 1.53 \ (1) \\ 1.53 \ (1) \\ 1.51 \ (1) \\ 1.51 \ (1) \\ 1.53 \ (1) \ (1$	
C2A C7A C1'A C2A C2A C2A C2'A O7''A C2''A O1A C1'A C1'A C1'A C1'A C1'A C1'A C1'A C2A C2''A O3''A C2''A O3''A C3''A O4'A C3''A O4''A C3''A O5B O5B C6B O7''B O5B O5B C6B O7''B O5A C4''A C3''A O4''A C3	011A 077A C1'A C1'A C1'A C1'A C1'A C1'A C1'A C1'A C2A C2A C2A C2A C2A C3'A C3'A C3'A C3'A C4A C4A C4'A C4'A C4'A C4'A C4'A C4'A C5B C5'B C5'B C5'B C5'B C5'B C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C4'A C5'B C5'B C5'B C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'A C5'B C5'A C7A C7A C7A C7A C7A C7A C7A C5'	C9A C11A C5"A C2'A C6A C6A C6A C3A C3A C3A C3A C3A C3A C3A C3A C3A C3	120-5 (6) 118-0 (6) 111-2 (7) 120-4 (8) 120-6 (8) 119-0 (8) 108-7 (6) 108-9 (8) 114-3 (8) 122-0 (8) 122-0 (8) 122-0 (8) 120-7 (8) 120-7 (8) 120-7 (8) 110-9 (7) 121-9 (8) 120-7 (8) 117-4 (8) 118-6 (9) 120-7 (8) 117-4 (8) 118-6 (9) 120-7 (8) 117-4 (8) 118-6 (9) 120-7 (8) 117-4 (8) 118-6 (9) 120-2 (9) 121-3 (8) 120-2 (8) 119-0 (9) 109-8 (7) 109-8 (7) 109-8 (7) 109-8 (7) 109-8 (7) 109-8 (8) 119-0 (9) 109-8 (7) 108-3 (8) 106-8 (7) 111-6 (7) 120-6 (8) 111-9 (8) 118-9 (8) 119-9 (7) 118-2 (9) 108-3 (8) 108-6 (7) 118-9 (8) 119-9 (7) 118-2 (9) 108-3 (8) 119-9 (7) 118-2 (9) 108-6 (7) 118-9 (8) 117-5 (8) 117-5 (8) 117-5 (7) 124-3 (8) 119-9 (7) 115-7 (7) 124-3 (8) 119-9 (7) 119-9 (7) 115-7 (7) 124-3 (8) 119-9 (7) 115-7 (7) 124-3 (8) 119-9 (7) 115-7 (7) 124-3 (8) 119-9 (7) 115-7 (7) 124-3 (8) 119-9 (7) 119-7 (7) 124-3 (8) 119-9 (7) 115-7 (7) 124-3 (8) 119-9 (7) 119-7 (7) 124-3 (8) 119-9 (7) 115-7 (7) 124-3 (8) 119-9 (7) 119-9 (7) 115-7 (7) 124-3 (8) 119-9 (7) 119-9 (7) 119-9 (7) 119-9 (7) 115-7 (7) 124-3 (8) 129-9 (7) 129-9 (7) 129-9 (7) 129-9 (8) 129-9 (8)	C1"A C7A O1A C7A O1A C8A C4A C5A C2B C4"B C7B C1"B C7B C1"B C7B C1"B C7B C1"B C7B C1"B C7B C1"B C7B C1"	C8A C8A C9A C9A C9A C10A C10A C10A C10B C6B C6B C6B C7B C7B C7B C7B C7B C7B C7B C7B C7B C7	C9A C9A C9A C8A C10A C5A C9B C6B C7B C7B C7B C7B C7B C7B C7B C7B C7B C7	$\begin{array}{c} 124 \cdot 5 \ (7) \\ 116 \cdot 2 \ (7) \\ 117 \cdot 5 \ (7) \\ 121 \cdot 3 \ (7) \\ 121 \cdot 3 \ (7) \\ 121 \cdot 3 \ (7) \\ 122 \cdot 2 \ (8) \\ 117 \cdot 6 \ (8) \\ 122 \cdot 2 \ (7) \\ 122 \cdot 3 \ (6) \\ 113 \cdot 2 \ (7) \\ 121 \cdot 3 \ (9) \\ 122 \cdot 4 \ (7) \\ 121 \cdot 3 \ (9) \\ 122 \cdot 4 \ (7) \\ 121 \cdot 6 \ (8) \\ 119 \cdot 4 \ (7) \\ 121 \cdot 6 \ (8) \\ 119 \cdot 4 \ (7) \\ 122 \cdot 6 \ (8) \\ 120 \cdot 6 \ (8) \\ 110 \cdot 6 \ (7) \$

D—H…A	<i>D…A</i> (Å)	D—H…A (°)		Symmetry operation*	
O4′ <i>B</i> —H6 <i>B</i> ⋯O4A	2.67 (1)	179	(iii)	00 - 1	
04''A—H15A…O4B	2.81 (1)	150	(iii)	-10-1	
O₩3—H₩31…O7″A	2.93 (1)	176	(i)	000	
O₩2—H₩2…O4″A	2.928 (6)	145	(iii)	- 10 - 1	
O3''B—H13B…O3''A	2.80 (1)	150	(i)	000	
OW3—HW32…O3″B	2.77 (1)	177	(i)	0 - 10	
04' <i>A</i> —H6A…OW4	2.60(1)	163	(iv)	0 1 - 1	
O₩4—H₩41…O₩3	2.62 (1)	165	(i)	000	
04''B—H15B…OW2	2.78 (1)	174	(iii)	-1-1-1	
OW1—HW1…O4″ B	2.82(1)	140	(i)	000	
03''A—H13A…OW1	2.863 (6)	143	(i)	000	

* Translations are along x, y and z, respectively, with the symmetry operators defined as: (i) x, y, z; (ii) -x, y, -z; (iii) $\frac{1}{2} + x$, $\frac{1}{2} + y$, $\frac{1}{2} + z$; (iv) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$.

Intramolecular hydrogen bonding occurs between the hydroxyl and ketonic O atoms of the flavone ring system. In molecule B, the hydroxyl H atom, H2B, located directly from the difference Fourier map, shows hydrogen bonding to the ketonic O atom, (O5B - H2B = 1.21), $O5B \cdots O4B = 2.61$ (1), O4B $H2B\cdots O4B = 1.76 \text{ Å} \text{ and } O5B - H2B\cdots O4B = 122^{\circ}).$ The related H atom was not located for molecule A; however, its presence is inferred from the distance of $O5A \cdots O4A = 2.514$ (9) Å and the absence of other short contacts to O5A. The intramolecular hydrogen bonding of aciculatin is similar to that exhibited in the related hydroxyflavones, hymenoxin (Watson, Kashyap, Gao & Mabry, 1991), 3-hydroxyflavone (Etter, Urbanczyk-Lipkowska, Baer & Barbara, 1986) or 5-hydroxyflavone (Shoja, 1990), 5-hydroxy-7-methoxyflavone (Shoja, 1989), 5,4'-dihydroxy-3.6.7.8-tetramethoxyflavone (Vijayalakshmi, Rajan, Srinivasan & Ramachandran Nair, 1986) and 4',5,7trihydroxyisoflavone (Breton, Precigoux, Courseille & Hospital, 1975).

The 2,6-dideoxy- β -ribo-hexopyranosyl ring is linked to C8 of the flavone through a β -C-glycosidic bond. The hexopyranosyl ring adopts a chair conformation with C1" and C4" located on opposite sides of the plane generated by C2"-C3"-C5"-O7". This is similar to both pyran rings in isokidamycin bis(m-bromobenzoate) (Furukawa & Iitaka, 1974, 1980) or one of the pyran rings (ring E) in triacetylmethoxykidamycin bis(trimethylammonium) iodide (Furukawa, Itai & Iitaka, 1973; Furukawa & Iitaka, 1974) and the β -D-glucosyl ring in 5-hydroxy-3',6-dibromo-2",3",4',4",6",7-hexaacetylvitexin (Jurnak & Templeton, 1975). The 4"-OH and 5"-CH₃ substituents adopt equatorial positions while the 3"-OH substituent adopts an axial position. As with the vitexin derivative, the plane of the hexopyranosyl ring is essentially perpendicular to the benzopyran ring [molecule A 91.4 (3), molecule B 88.9 (3)°] in order to minimize steric interactions.

The two independent molecules of aciculatin also differ in the magnitude of the torsion angles associated with the hydroxyl groups on the phenolic and Intermolecular hydrogen bonding (Table 3) occurs between O3"A and O3"B [O3"B...O3"A = 2.80 (1) Å and 150°] of the two independent molecules. In addition, hydrogen bonding occurs between the ketonic O atom O4A and the phenolic O atom O4'B [O4'B...O4A = 2.67 (1) Å and 179°] and between the ketonic O atom O4B and the hydroxyl O atom O4"A [O4"A...O4B = 2.81 (1) Å and 150°]. There is also a network of hydrogen-bonding interactions between the aciculatin molecules and the water molecules which stabilizes the crystal lattice.

This work was supported in part by grant No. GM39S26-02 from the National Institutes of Health. JAK thanks the NIH for postdoctoral support under this grant.

References

- BRETON, M., PRECIGOUX, G., COURSEILLE, C. & HOSPITAL, M. (1975). Acta Cryst. B31, 921–923.
- CARTE, B., DEBROSSE, C., OFFEN, P., CARR, S., HEMLING, M., BERRY, D. E., MACKENZIE-LOCASTRO, L. & WESTLEY, J. W. (1991). *Tetrahedron*. Submitted.
- Enraf-Nonius (1979). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.

- ETTER, M. C., URBANCZYK-LIPKOWSKA, Z., BAER, S. & BARBARA, P. F. (1986). J. Mol. Struct. 144, 155–167.
- FURUKAWA, M. & IITAKA, Y. (1974). Tetrahedron Lett. pp. 3287–3290.
- FURUKAWA, M. & IITAKA, Y. (1980). Acta Cryst. B36, 2270-2276.
- FURUKAWA, M., ITAI, A. & IITAKA, Y. (1973). Tetrahedron Lett. 1065–1068.
- GLUSKER, J. P. & ROSSI, M. (1986). Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships, edited by V. CODY, E. MIDDLETON JR, & J. HARBORNE, pp. 395-410. New York: Alan R. Liss.
- HAYASHI, T., KAWAI, S., OHNO, T., IITAKA, Y. & AKIMOTO, T. (1974). Chem. Pharm. Bull. 22, 1219–1226.
- JURNAK, F. A. & TEMPLETON, D. H. (1975). Acta Cryst. B31, 1304–1309.
- MARIEZCURRENA, R. A. (1978). Acta Cryst. B34, 2322-2324.
- MAYER, F. & COOK, A. H. (1943). The Chemistry of Natural Colouring Matters. New York: Rheingold.
- Rossi, M., CANTRELL, J. S., FARBER, A. J., DYOTT, T., CARRELL, H. L. & GLUSKER, J. P. (1980). *Cancer Res.* 40, 2774– 2784.
- SHELDRICK, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRÜGER & R. GODDARD, pp. 175-189. Oxford Univ. Press.
- SHOJA, M. (1989). Acta Cryst. C45, 828-829.
- SHOJA, M. (1990). Acta Cryst. C46, 517-519.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3176–3187.
- TING, H.-Y., WATSON, W. H. & DOMINGUEZ, X. A. (1972). Acta Cryst. B28, 1046–1051.
- TOMLIN, D. W. & CANTRELL, J. S. (1990). Acta Cryst. C46, 519-521.
- VIJAYALAKSHMI, J., RAJAN, S. S., SRINIVASAN, R. & RAMACHANDRAN NAIR, A. G. (1986). Acta Cryst. C42, 1752– 1754.
- VLEGGAAR, R., KRUGER, G. J., SMALBERGER, T. M. & VAN DEN BERG, A. J. (1978). Tetrahedron, pp. 1405–1408.
- WATSON, W. H., KASHYAP, R. P., GAO, F. & MABRY, T. J. (1991). Acta Cryst. C47, 459-461.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1991). C47, 2598-2603

Structure of Cortivazol, 11β,17α,21-Trihydroxy-6,16α-dimethyl-2'-phenyl-2'Hpregna-2,4,6-trieno[3,2-c]pyrazol-20-one 21-Acetate

BY EDMUND W. CZERWINSKI

Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, Texas 77550, USA

(Received 7 February 1991; accepted 29 May 1991)

Abstract. $C_{32}H_{38}N_2O_5$, $M_r = 530.7$, monoclinic, C_2 , a = 30.625 (5), b = 6.229 (2), c = 15.289 (2) Å, $\beta = 93.86$ (2)°, V = 2909.8 Å³, Z = 4, $D_x = 1.211$ g cm⁻³, $\lambda(Cu K\alpha) = 1.5418$ Å, $\mu = 6.2$ cm⁻¹, F(000) = 1136, T = 292 K, final R = 0.047 for 2415 reflections with $I > 2.5\sigma(I)$. All bond lengths and angles are within normal limits. Ring A with two double bonds is not planar, but is in the 1α , 10β half-chair conformation. Ring *B* is in a 9α , 10β half-chair conformation distorted towards a 9α sofa. Ring *C* is in the expected chair conformation, whereas ring *D* is in the 13β envelope conformation. The C20, C26, C27 and N29 substituents are equatorial, O11, C18 and C19 are β axial, and O17 and C25 are α axial. Rings *C* and *D*

0108-2701/91/122598-06\$03.00

© 1991 International Union of Crystallography